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Implementation of a Simple Model for Linear  and  Nonlinear 
Mixing at Unstable Fluid Interfaces  in Hydrodynamics Codes 

(U) 
John D. Ramshaw 

Lawrence  Livermore National Laboratory 

A simple  model  was  recently  described for predicting  the  time  evolution of the width o f the   m ix -  
ing  layer  at  an  unstable  fluid  interface [J .  D. Ramshaw,  Phys.   Rev.  E 58, 5834 (1998); ibid. 
61, 5339 (2000)]. The  ordinary  diflerential  equations of this  model  have  been  heuristically 
generalized  into  partial  differential  equations  suitable for  implementation in multicomponent 
hydrodynamics  codes.  The  central  ingredient in this  generalization is a nun-diffusional  ex- 
pression for the  species mass fluxes.  These  fluxes  describe  the  relative  motion of the  species, 
and  thereby  determine  the local mixing rate  and  spatial  distribution of mixed  fluid  as a func- 
t i on  of t ime. The generalized  model  has  been  implemented in a two-dimensional  hydro- 
dynamics code. The  model  equations  and  implementation  procedure  are  summarized,  and 
comparisons  with  experimental mixing data  are  presented. 

Keywords: mixing,  instability,  Rayleigh-Taylor, Richtmyer-Meshkov, Kelvin-Helmholtz 

Introduction 
There is considerable current  interest  in  material  interpenetration  and  mixing at unsta- 

ble fluid interfaces,  particularly  those  driven by the normal  acceleration of adjacent fluid 
layers with different densities. Such processes occur, for example,  in the implosion of inertial 
confinement fusion capsules and in  certain  astrophysical  problems.  These processes can  in 
principle  be  computed in  detail by direct  numerical  simulations with  multidimentional hy- 
drodynamics codes, and recent  advances in computer technology and numerical  methodology 
now make this feasible in some problems. In most  practical  applications, however, computer 
time and/or storage  limitations  still preclude a complete  simulation of the very wide range 
of length  and  time scales involved in such instabilities.  In  particular,  the  development of 
the instabilities, at least at early  times,  is  sensitive to  the  amplitude  and  length scales of 
the  initial  perturbations, which are frequently too  small to  resolve in a practical  computing 
mesh. 

In  order to simulate the effects of interfacial  instabilities  and  material  mixing  with rea- 
sonable  accuracy on present-day  computers, it is therefore necessary to develop submodels 
which capture  the essential physics of these effects in a form and framework suitable for 
implementation  into  hydrodynamics codes. Conventional  turbulence models are not well 
suited for this purpose, as they  are usually developed and calibrated for single homogeneous 
materials  rather  than a mixture of different materials  with significantly different densities. 
Multiphase  turbulence  models allow  for the different materials  but  tend to be much more 
complicated, which makes them difficult to validate  and  implement.  Ease of implementa- 
tion  is a major  consideration, since modern  hydrodynamics  codes  are becoming ever more 

lThis work was performed under the auspices of the US. Department of Energy by the University of 
California  Lawrence  Livermore  National  Laboratory  under  contract No. W-7405-Eng-48. 
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sophisticated  and difficult to  modify. Thus  there is a particular need for mixing models 
which are simple  enough to be  installed  into  existing  hydrodynamics codes on a relatively 
short  time scale. Such  models  should clearly be as simple and easy to  retrofit as possible, 
but  not of course so simple that  they fail to  capture  the essential physics. Models of this 
type will necessarily be phenomenological, but  they should  be as fundamentally based as 
their simplicity allows. They should attempt  to maximize the physics while minimizing the 
empiricism and  the  number of free parameters. 

These  requirements  imply that  the model  must allow for an  arbitrary time-dependent 
acceleration  history a @ ) ,  and  it  must reproduce the known linear  and  nonlinear  growth 
behavior of the incompressible Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) insta- 
bilities as special cases. Other desirable  features  include the  ability to represent compression 
effects, shock waves, and Kelvin-Helmholtz (KH) instabilities  resulting from tangential ve- 
locity  discontinuities. A simple  model with  these  features has recently been constructed 
based on  the general  concepts of energy conservation and scale  invariance  (Ramshaw 1998, 
2000). This model takes  the form of a second-order ordinary  differential  equation (ODE) (or 
two coupled  first-order ODES) for the  time evolution of the  penetration  depth h of the light 
fluid into  the heavier one (see Fig. 1). The  model  correctly  reproduces  the known linear and 
nonlinear  growth  behavior of the RT, RM, and KH instabilities,  and gives results  in good 
agreement  with the  experimental data of Dimonte  and Schneider (1996) for four different 
time-dependent  acceleration  histories. It therefore seems a promising  candidate to  represent 
the effects of interfacial  instabilities  and  mixing  in  hydrodynamics codes. 

HEAVY FLUID 

LIGHT FLUID 
Figure I: Schematic of mixing layer. 

However, it is by no means obvious how best to incorporate ODE models of this general 
type  into  the  partial differential  equations (PDEs) of hydrodynamics.  The  central problem 
is that ODE models and  the variables  therein (like h) are global in  nature, whereas the 

2 

UNCLASSIFIED 



UNCLASSIFIED 
PDEs of hydrodynamics  are  local. In particular,  the description of mixing  in  hydrodynamics 
requires expressions for the local mass fluxes of the different materials relative to  the mean 
fluid velocity. The mixing model must  supply  these expressions, and  this requires the intro- 
duction of additional ingredients and  assumptions. A variety of new issues arise and must be 
addressed,  and  there  is considerable ambiguity  (or freedom!) about how to resolve them  and 
proceed. Here we propose and describe a particular procedure for extending  the ODE model 
into a local  model for predicting  local material mass fluxes in a hydrodynamics  code. We do 
not claim that  the present  procedure is unique  or even optimal,  but  it is straightforward, easy 
to implement,  and works well in the  test problems  performed to  date.  This  procedure  has 
been used to  incorporate  the model in a relatively  simple  multicomponent  hydrodynamics 
code (Cloutman 1990) for testing  purposes. The resulting  code has been used to.simulate 
a set of incompressible  linear  electric  motor  experiments  (Dimonte and Schneider 1996), as 
well as a shock tube experiment  performed by Zaytsev et al. (Miigler and  Gauthier 1998). 
In both cases the agreement  with  experiment is quite satisfactory. Further development and 
testing of this model and  implementation  procedure in other hydrodynamics  codes  therefore 
seems worthwhile. 

Summary of the ODE Mix Model 
The ODE mix  model used  in this work is based on the general  concepts of energy conser- 

vation  and  scale invariance. The model was constructed by a heuristic  procedure  consisting 
of three  main  steps: (1) The first step is to derive a time evolution  equation for the kinetic 
energy of an inhomogeneous fluid subjected to  a slow uniform but anisotropic  compression 
or expansion. (2) The various terms in this  equation  are  then evaluated  using the linear 
potential flow solution for two fluids separated by a sinusoidally perturbed  interface  with 
amplitude h and wavelength X. This ensures that we properly capture  the  correct  linear 
stability behavior for small  perturbations. (3) Finally, the  formulation is extrapolated into 
the nonlinear regime by means of a wavelength renormalization  hypothesis (WRH) , accord- 
ing to which the effective value of X becomes proportional to lhl at late  times.  The  WRH 
embodies the scale  invariance that mixing layers are expected to exhibit  in the nonlinear 
regime. The  reader is referred to the  literature for the derivation  and  further  discussion. 
Here we shall  simply  summarize the model and a few post-publication  improvements, so 
that we can  concentrate  on  the  implementation issues in subsequent sections. It should  be 
noted  that  the general  model  (Ramshaw 2000) includes the effects of KH instability  resulting 
from  transverse  shear,  but  these effects are neglected here for simplicity. 

The model  may  be expressed in the form of the following two coupled ODES: 

iZ= D,h+v (1) 
d 1 Jx ( A v )  = Zn[a(t)Ah - C I V ~ Z I ]  - -DtXv 

4 
where a( t )  is  the acceleration  normal to the interface, A is  the Atwood number, D, and Dt 
are  the  normal  and  transverse expansion rates, X is a function of blhl (defined below),  and 

2 - 30 
4a(2 - 8)  

c =  
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where a and 8 are  parameters in the nonlinear RT and RM growth laws h m  = aAgt2 and 
hRM - te. The  term involving a( t )  represents the growth of the instability  due to  buoyancy 
forces, while the  term involving c represents the viscous dissipation of mixing energy to 
thermal energy. 

In this  model,  the effective perturbation wavelength X undergoes a transition from its 
initial value X0 for lhl << X0 to  the WRH value b(hl when lhl >> Xo. This  transition 
was originally effected suddenly at the  point lhl = mXo, where rn - 1/2  is set at the user's 
discretion. This is clearly  unrealistic, as there is a weakly nonlinear transitional regime during 
which the  instability  has become nonlinear but X 0  remains the dominant  length  scale. We 
therefore now allow for a smooth  transition between linear and fully nonlinear  behavior over 
the range r n J o  < lhl < m 2 X o .  This can be done by replacing c by fc and  letting 

where f = 3z2 - 2x3 and x = (lhl/Xo - ml)/(m2 - ml),  subject to  the  constraint 0 5 x 5 1. 
However, one  intuitively  suspects that  the  damping coefficient c should come into play before 
X changes  much, and  this  can be  accomplished by raising f to different powers in the two 
quantities;  i.e.,  replacing c by fYc and  letting 

Test calculations to  date have been performed with ml = 0.1, r n 2  = 1, y = 0.1, and x = 2, 
but more detailed  comparisons  with weakly nonlinear h(t) data  are needed to determine  the 
values of ml and m2 and/or  the form of f .  

The Treatment of Shock Waves 
This model  presents two known problems when shock waves are present. The first is that 

hydrodynamics  codes  typically  treat shock waves by shock smearing  or  capturing  techniques, 
which artificially  thicken the shock by means of a shock viscosity. This in turn artificially 
prolongs the  duration of the shock, which may then become gradual  rather  than impulsive 
compared to the  natural  time scale for h to  change in  the mixing  model. This would  allow a 
significant but unphysical change in the value of h during  the shock, and  the shock would not 
then  deposit  the  correct energy in the mixing  layer.  Fortunately, this problem  can easily be 
avoided by monitoring the shock viscosity within  the mixing layer to  detect  the presence of a 
shock, and  replacing v by zero in Eq. (1) while the shock is present. This  has the physically 
appropriate effect of freezing h (except for compression effects) at its value when the shock 
arrives until  the shock has passed by. 

The second  problem is more insidious: if a perturbed interface is subjected to  a slowly 
varying a( t )  < 0, h(t) will undergo stable oscillations about h = 0. If a shock wave then 
strikes the mixing  layer, its effect  will be highly sensitive to its  arrival  time relative to  the 
phase of the oscillations (see Fig. 2). In particular, if the shock arrives at a time when lh\ 
is very small or zero, it will have little  or  no effect. This behavior is actually physical for 
a single-mode perturbation in the linear  regime, but will rarely occur in  practical  problems 
due to  the inevitable presence of other  modes and  the  fact  that it is highly unlikely that all 
the  associated  mode  amplitudes would be very small at the  same  time. 
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shock 

Figure 2: Sensitivity to shock arrival  time  during  stable  oscillations. 

Unfortunately,  there is no obvious way to cure  this  problem properly  without  generalizing 
the model to  include a true  multimode capability, which would entail a great  deal of addi- 
tional complexity. However, the problem  can be  ameliorated or prevented  from  occurring by 
means of various simple ad hoc fixes such as the following: 

Set u = 0 whenever hu < 0. This completely prohibits dernixing. 

Replace a( t )A  by max(a(t)A,O) when shocks are  absent.  This ignores accelerations 
in the  stable direction except when shocks are present, when they  cannot  be ignored 
without losing the RM instability. 

Greatly increase the dissipation coefficient c when hv < 0 to  retard  the  rate of demixing. 

Reverse the sign of h whenever hv < 0. This completely  prohibits  demixing but pre- 
serves the sign information  contained  in v and V, which seems important in  problems 
with  multiple  or reflected shocks. 

We emphasize, however, that none of these fixes is fully satisfactory,  and  all of them 
produce  other  unphysical  behavior  in some situations.  They  should therefore be used with 
care  and  caution to  ensure that  the cure  does not  produce worse symptoms  than  the disease. 
At present we are leaning toward (d) above, which seems to  do  the minimum violence to  the 
remaining physics, but further investigation is needed. 

Implementing ODE Mix Models in Hydrodynamics Codes 
A number of new issues must  be  addressed in  order to implement ODE mix models of 

the present type in  hydrodynamics codes. The  situation is complicated by the  fact  that  the 
variables  in ODE mix  models (such as h and v )  are  inherently global in nature, while the 
PDEs of hydrodynamics  are  inherently local. It is by no  means obvious (at least to  the 
present author) how best to convert between these two very different types of description. 
It is  evidently necessary to  compute  and  store h and v as local  variables  in every cell of the 
computing mesh (or at least every cell containing  mixed  materials) while maintaining  their 
interpretation as semi-global quantities  associated  with a larger region containing the cell 
in  question. Since h and u are  not  local  densities of conserved quantities,  they need not 
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be  transported 
transported  or 
global nature. 

conservatively (or even differentially!), but  their values must nevertheless  be 
propagated between cells in some sensible way consistent  with their semi- 
The  computation of h and v also requires the  quantities a@),  A, D,, and 

Dt, so it is necessary to  specify the  manner in which these  quantities  are  to be  evaluated  in 
terms of the  hydrodynamic variables. 

Even if we have sensible local or semi-local values for h and v ,  these variables are  not 
themselves  directly useful in hydrodynamics. The basic quantities required in a hydro- 
dynamic  description  are  the local material  or species mass fluxes, which are required to 
describe the local transport of materials  and  predict local species concentration profiles and 
distributions.  The mix  model must supply  these  mass fluxes, and  this requires further mod- 
eling assumptions.  These fluxes can  be expressed in terms of the relative velocities between 
species, which are evidently closely related to  w. However, v is a scalar while the mass fluxes 
are vectors, so it is necessary to define the direction they  point in as well as their precise 
dependence on w and  other variables. It is natural to identify this direction with  the local 
normal to  the mixing  layer, which is also needed for other purposes. This  normal direction 
must  be defined in terms of the  hydrodynamic  variables  and  their  gradients. Moreover, the 
mix model  contains  only two materials,  light  and heavy, whereas realistic problems of inter- 
est  often involve multiple species. It is therefore necessary to construct logic for grouping 
multiple species together  into light and heavy materials,  and conversely for separating  the 
light and heavy mass fluxes into mass fluxes  €or each individual species. 

The  primary effect of the mix model  on the  hydrodynamic equations  occurs through 
the species mass fluxes, which appear in the species continuity  equations. This effect  is 
straightforward  and is the essence of mixing. However, it is also necessary to  determine the 
form of any  required  modifications to  the  other  hydrodynamic  equations.  In  particular,  the 
species  mass fluxes imply a corresponding additional  enthalpy flux which must  be  accounted 
for. In  addition,  the  relative motion of materials  implies  the presence of non-thermal  kinetic 
energy which is not  contained  in  the mean flow. This energy must  be included in  the overall 
energy  balance, and its dissipation  produces thermal energy which also must be accounted 
for. 

Finally, incorporation of the model in a hydrodynamics  code requires consideration of 
numerical issues, including the placement of variables and  the numerical scheme used to  
advance  them in time.  The numerical treatment is constrained by the requirement of com- 
patibility  with  the mesh and numerical scheme used for the hydrodynamics, and hence will 
be somewhat code-specific. Fortunately,  these  numerical issues present no particular dif- 
ficulties and  are relatively  straightforward  compared to the more  subtle  conceptual issues 
discussed above. 

The above are  the  main issues that needed to be addressed  in  order to extend the original 
ODE model into it form  suitable for implementation in hydrodynamics codes. The  manner 
in which these issues were treated  and resolved  will be described  in  subsequent  sections. It 
should  be  noted, however, that most of these issues do not  admit of a unique resolution. We 
are  constructing a model rather  than a  theory, and by its very nature a model represents 
a collection of uncontrolled  approximations.  These  approximations present a variety of 
different choices, and  their validity  can only be assessed a posterzorz. Thus we cannot,  and 
do not, claim that  the choices made here are unique or optimal,  but  it is encouraging that 
the  resulting  solutions agree well with  experimental data in the  test problems performed to 
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date. However, more extensive test  calculations  and  implementations in other  hydrodynamic 
codes will be  required before a final assessment can  be  made. 

Two Materials vs. Multiple Species 
A general  multicomponent  hydrodynamics  formulation  must allow for an  arbitrary  num- 

ber of species or  materials,  whereas the mix  model has only two materials, light and heavy. 
In order to employ it in more  general situations,  it is evidently necessary to  divide the species 
into a light  subset A and a heavy subset B. This may be done  either globally or locally. Once 
each species has been labeled as being  light or heavy, the local partial  densities of the light 
and heavy materials  are given by 

where pi is the local partial  density of species i (Le., mass of species i per  unit  total  volume). 
The local volume fraction of species i is ai = p i / p p ,  where pp is the mass density of pure 
material i (i-e., mass of species i per  unit volume of species 2). The local volume fractions 
of the light and heavy materials  are  then given by 

Q A  = aB = Ea; 
iEA i E  B 

The local  densities of “pure”  light  and heavy materials may then  be defined by 

and  the local Atwood number is then given by 

Pi - POA 
P i  + Pi 

A =  

Equation (9) breaks down in cells containing  pure or nearly  pure A or B, so we temporarily 
insert  small  virtual  quantities of A or B into such cells in order to ensure that p i  and p; 
have reasonable values everywhere. 

Normal  Vector and Acceleration 
The local unit vector  normal to the mixing layer (region)  is defined by 

which by construction  points  from the light  material  into  the heavy material.  The  local 
acceleration in  the  normal direction is then given by 

a( t )  = - (l /p)n - Vp 

where p and p are  the local  mass  density and pressure of the fluid. 

Mass-Weighted,  Volume-Weighted, and Relative Velocities 

equation. It is related to  the velocities of materials A and B by 
The local mass weighted fluid velocity u is determined by the hydrodynamic  momentum 
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Similarly, the local volume weighted fluid velocity is given  by 

and it  is easy to show that 

Since it is u, rather  than u which determines volume changes, the local  expansion rates D, 
and Dt should  evidently be evaluated  from u, rather  than u. We therefore  set 

Inspection of Fig. 1 suggests that  the relative velocity should be of the form 

UA - us = p(1- t  r)w sign(h)n (18) 

where p is an as yet  undetermined coefficient of order  unity. However, this expression requires 
Eocal values of v and h, which have not yet been defined. The  manner in which h and w are 
determined  locally will be discussed below. The spike/bubble  height ratio r is given by 
(Dimonte  and Schneider 2000) 

where we have imposed a constraint to prevent the spike velocity from exceeding the free-fall 
velocity in a constant  gravitational field for large  density  ratios. 

Mass Fluxes and Species Transport 

dividual  species  continuity  equations, which take  the form 
Species transport  and mixing in multicomponent  hydrodynamics is governed by the in- 

where Ji is mass flux of species i relative to u. It is the  task of the mix model to  supply  these 
fluxes. This will be  done by expressing Ji in terms of the light and heavy material mass 
fluxes JA = ~ A ( u A  - u) and JB = p~(uB - u) = - J A .  Using Eq. (13), we readily obtain 

To relate Ji to J A , B ,  we simply  regard  materials A and B as mixtures which carry  their 
constituent species along  with them, so that 

where y t  and y: are  the mass fractions of species i in materials A and B. Ordinarily a given 
species is considered either light or heavy, so that only one of y$ and y s  is nonzero for each 
i. Equations (21) and (22) determine  the species mass fluxes in terms of the relative velocity 
given by Eq. (18). 
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The different species have different thermal energies, so a  corresponding term xi hiJi 

must also be  added to  the  heat flux in the energy  equation, where hi is the  partial specific 
enthalphy of species i. This  term is often  referred to as the “enthalphy diffusion’’ term when 
the mass fluxes Ji are diffusional in nature. Most turbulent mixing  models  indeed employ 
diffusional expressions for Ji, but in the  present  context  this seems inconsistent  with the 
inertial  nature of the mixing process. In  contrast,  the mass fluxes in  the present treatment 
are  inertial  and reversible, which permits  the  description of demixing in  stable accelerations. 

For the case of one-dimensional mixing of two incompressible materials  with a uniform 
value of v(t) ,  an  analytical  similarity  solution  can  be derived for the volume fraction profile. 
The  result is 

The  total  width of the mixing layer from CXA = 0 to QIA = 1 is seen to be 2p(1 + ~ ) h .  Equating 
this  width to  (1 +r)h  (see Fig. 1) then gives p = 1/2, thereby  roughly  determining the value 

The use of a constant value of p in  Eq. (18) therefore  results  in a linear volume fraction 
profile in this  situation, which is the simplest  qualitatively reasonable possibility. However, 
this profile becomes more  and more  unrealistic as the Atwood number increases, as it does 
not  properly reflect the asymmetry  between  spike  and  bubble  penetration.  Fortunately, a 
generalized similarity  solution shows that  other profiles can  be  accommodated by introducing 
an  appropriate volume fraction  dependence into UA -ug . This provides a mechanism whereby 
experimentally  determined volume fraction profiles can  be  incorporated  into the model if 
desired. 

of p. 

Computing “Local” Values of h and v 
Having defined local values for the  quantities a@),  A, Dn, and Dt, we are now in a 

position to advance h and v in  time by means of Eqs. (1) and (2). However, this requires  us 
to  confront our  central  dilemma: by their very nature h and  are  not local  variables, and 
yet they  must  be  computed locally in a hydrodynamics code. We shall attempt  to evade this 
dilemma by the simple  expedient of defining and  computing local values of h and v within 
each cell of the  computing mesh, but  interpreting  these values as semi-global (or  semi-local) 
parameters which pertain  to  the  part of the mixing layer in the neighborhood or vicinity of 
that cell. However, it is not sensible to  compute h and w in unmixed cells containing  pure 
or  nearly  pure A or B, so we set h = v = 0 in such cells. We consider a cell unmixed if its 
value of CQ is less than 0.01 or  greater than 0.99. 

The  interpretation of h and w as semi-global quantities implies that  their  gradients within 
the mixing layer should  remain  small. To ensure  this, we smooth  the h and v fields by an 
artificial diffusional process which tends to equalize nonzero values of h and v in neighboring 
cells. However, this process  is  not allowed to produce  nonzero values of h or v in  unmixed cells 
where h = w = 0, so it does not  tend to  spread  out  the mixing region. The  expansion of the 
mixing region occurs  entirely  through the  action of the mass fluxes, which are nondiffusional 
in character as discussed above. The  smoothing of h and v therefore  does  not diffuse species 
or materials. 

9 

UNCLASSIFIED 



UNCLASSIFIED - 

As the mixing layer grows, or as it moves through  the mesh due  to mesh motion  and/or 
convection of the fluid as a whole, it is necessary to  transport  or  propagate h and u between 
cells accordingly. Since h and v are  not  densities of conserved quantities,  there  is  no need 
or  incentive to  transport  them conservatively. Indeed, since h and u are  not really  local 
variables, it is even dubious to  transport  them in the  usual local manner involving convective 
derivatives. If this were done, h and v would tend  to  be  smeared  out by numerical diffusion, 
which would reduce their  amplitudes  and  introduce  undesirable  gradients  in  their values 
within  the mixing region. We therefore use an entirely different approach  based  on the 
idea that h and v are inherently attached  to,  and hence transported along with,  the mixed 
material which they produce. This  idea  can  be  implemented  simply by switching  on h and 
w when the mass fluxing causes a previously unmixed cell to acquire a significant amount of 
the  other  material.  When  an unmixed cell with h = w = 0 acquires a value 0.01 < CYA < 0.99, 
we therefore set h and w in that cell equal to  an average of the nonzero values in  neighboring 
cells. 

Energy Conservation 
The relative  motion of materials implies the presence of additional kinetic  energy which is 

not contained  in the kinetic energy of the mean flow. This  kinetic energy of mixing is closely 
analogous to  the  turbulent kinetic energy appearing in  turbulence  models.  The total energy 
of the flow is of course still conserved, but now includes  mixing energy as well as thermal 
and mean flow kinetic energy. A transport  equation for the mean flow kinetic  energy  density 
;plul2 can readily  be derived from the  momentum  equation in the usual way. When  this  is 
subtracted from the  total energy equation,  one  obtains an internal energy  equation which 
looks formally the  same as the usual one. This is deceptive, however, because the resulting 
“internal”  energy is nu longer purely thermal,  but now includes the kinetic  energy of mixing 
as well. 

The present  model therefore requires two modifications to  the energy equation: (a) in- 
clusion of the  additional  term xi hiJi in the  heat flux as previously noted, and  (b) rein- 
terpretation of the internal energy as the  sum of mixing and  thermal energies as described 
above. Once (a) has been implemented, the “internal”  energy  may  be  computed in the usual 
way.  However, (b) implies that it is then necessary to  subtract  out  the local  mixing energy 
in  order to  obtain  the local thermal energy €or use in the  thermodynamic  state relations. 
Unfortunately, the local mixing energy density cannot  be  directly  evaluated  in  the present 
model, since h and w are  not local variables. This problem is not peculiar to  the present 
model,  but occurs in any model in which the kinetic  energy of turbulence or mixing is not 
computed  and  stored locally. In particular, the  same  situation occurs [but  has  rarely been 
discussed) in  the original Smagorinsky/Deardorff subgrid-scale  turbulence  models, which do 
not compute  the  turbulent kinetic energy either.  These  models  simply  presume that the 
internal energy is purely thermal,  and hence they  implicitly  assume that  turbulent energy 
is negligible compared to  thermal energy. This is always the case at low Mach number, but 
cannot safely be  assumed at higher Mach numbers. 

Even though  the local kinetic energy of mixing cannot  be  directly evaluated  in the present 
model,  it  can nevertheless be approximated  in  the following manner.  The  approximation is 
based  on the  fact  that in contrast to h and w, the  material velocities UA and ug really are 
local  variabies, so the  material kinetic energy densities Q A  = Z p ~  ( u A I 2  and Q B  = i p B  lug l2 

10 

1 

UNCLASSIFIED 



UNCLASSIFIED 
can  be  evaluated locally. One  might at first think  that  the mixing  energy  density is simply 
Q A  + QB - $p(u I2 ,  but  this would be  wrong  because it neglects the  contributions of the 
small-scale  secondary flows which contribute to the mixing  energy but not to UA and ug. 
These  contributions  cannot  be  evaluated  exactly, but their effect may  be  approximated by 
inserting a correction  factor  based  on the relative  magnitudes of the normal and  transverse 
contributions to  the kinetic energy tensor  in  the linearized potential flow solution  (Ramshaw 
2000). However, this  solution was obtained in a frame moving with u, rather  than u, so this 
difference must also be  accounted for. The  net  result is the following approximate expression 
for the local  mixing  energy  per unit volume Q, 

The local thermal energy  density  can then  be  approximately  evaluated simply by subtracting 
Q from the local internal energy  density  computed from the energy equation. 

Numerical Scheme 
The time  advancement of h and v requires an  approximate solution of Eqs. (1) and 

(2) in each mixed cell. This is done by means of the  same scheme originally used for the 
previous  incompressible  model  (Ramshaw 1998), augmented by a suitable  treatment of the 
compression terms. We evaluate h in  the compression term  in Eq. (1) as  either h" or hn+' 
according as Dn > 0 or Dn < 0, respectively. Similarly, we evaluate v in the compression 
term in Eq. (2) as either vn+' or vn according as Dt > 0 or Dt < 0, respectively. This 
treatment preserves the essential physical property  that  these  terms  cannot change the sign 
of h or v, no matter how large the  time  step becomes. 

It is also necessary to  specify the placement of the variables  in the  computing mesh so 
that  the  spatial differencing may  be defined. This will of course depend  on the  type of 
mesh and  the placement of the hydrodynamic  variables  therein, so no general  procedure 
can  be given. In most  hydrodynamics  codes,  thermodynamic  variables such as pressure and 
densities  are  located at cell centers,  and a spatial difference approximation to  Eq. (20) is 
obtained by integrating over the volume of a typical cell and using the divergence theorem 
to convert volume integrals to surface  integrals.  When  this is the case, the mass fluxes JA 
and Ji are required  on cell faces. Regardless of where h and v are  located, some averaging or 
interpolation is required to  obtain  them  and/or  the  other  quantities at places where they  are 
not  fundamentally defined. At  present we simply  locate h and w at cell centers. Quantities 
required to  compute cell face values of JA and Ji from E,qs. (18), (21) and (22) are  obtained 
by averaging  or interpolation  from  the  adjacent cell centered quantities, except that we use 
whichever of the two adjacent values of w is larger  in  magnitude  in  Eq. (18). This is done 
to ensure that  the relative velocity has  its full value even on faces where one of the adjacent 
cells is unmixed and consequently  has v = 0. 

Pilot Implementation and Test Calculations 
The present  model has been implemented  in the COYOTE code (Cloutman 1990) for test- 

ing  purposes. COYOTE is a rectangular-mesh  Eulerian  code for computing  multicomponent 
hydrodynamics  problems  in two space dimensions.  Test  calculations have been  performed 
corresponding to  the experimental data of Dimonte  and Schneider (1996) on the growth 
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of a mixing layer between two incompressible  fluids  subjected to  four different acceleration 
histories. All calculations were performed with  the fixed parameter values a = 0.06, 8 = 0.3, 
and p = 0.5. The  bubble  penetration  depth h was defined as the distance  from the original 
unperturbed interface to  the point where CYA = 0.07. It is convenient to plot h vs. the in- 
terface displacement x defined by dzz/dt2 = a@). Comparisons between the  computed  and 
measured values of h(z)  are shown in  Fig. 3. The agreement is seen to be  quite  satisfactory. 

h vs. Z for Dimonte-Schneider cases 
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Figure 3: Comparison of computed  and  measured  bubble  penetration  depths for four different 
acceleration  histories. 

The  time evolution of the computed volume fraction profiles for the “constant” acceler- 
ation case is shown in  Fig. 4. As expected  from the  similarity  solution,  the profiles are seen 
to be  nearly  linear  except for the  rounding of the corners by the numerics. 

We also performed a RM simulation  corresponding to a shock tube  experiment by Zaytsev 
(Miigler and  Gauthier 1998), in which a Mach 3.5 shock wave impinges on a perturbed 
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volume fraction profiles for Dimonte-Schneider case 1 
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Figure 4: Volume fraction  of'light  material vs. normal  distance y at t = 10, 20, 30, 40, and 
50 ms. 

interface between Kr  and Xe, The initial  perturbation is sinusoidal with  amplitude ho = 0.5 
cm and wavelength X0 = 3.6 cm. The mixing layer width is defined, both  experimentally 
and  computationally, as the distance between the points at which a A  = 0.05 and 0.95. 
The calculation was performed using the  same values of a, 8, and p as before, and  the 
parameters defining the weakly nonlinear transitional regime parameters were arbitrarily 
taken  to  be rnl = 0.1, m2 = 1, y = 0.1, and x = 2. Figure 5 compares the  computed  and 
measured  mixing layer widths, and the agreement is again  quite  satisfactory. 

Unresolved Issues and Missing Physics 
Although  the model now contains  many of the ingredients needed to  perform  nontrivial 

simulations of practical  problems, it still requires further development and improvement in 
several  areas,  including the following: 

e The present  model is limited to single-mode perturbations  in  the linear regime. The 
generalization to allow €or multimode  perturbations  and mode coupling would be highly 
desirable. In particular,  this would remove the model's  most serious deficiency in deal- 
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Figure 5: Comparison of computed  and  measured  mixing layer width in Zaytsev shock tube. 

ing  with shock waves. Unfortunately, it is not clear how to accomplish this generaliza- 
tion without a substantial increase in complexity. 

e When A@) < 0 the model  properly  predicts dernixing (reseparation) of the two fluids, 
but at a rate which is expected to  be  too fast (Ramshaw 1998). Modifications to 
reduce the  rate of demixing  should be developed and  validated by comparisons  with 
experimental data on  demixing rates. 

e In its present  form, the model neglects  surface  tension and assumes the two fluids are 
immiscible. It therefore  does  not allow for molecular diffusion and does not  compute 
the  transition from reversible inertial to irreversible diffusive mixing. Removal of this 
restriction will probably  require the  introduction of additional variables to represent 
information  about  the  spectrum of length scales and  the  rate at which molecular mixing 
occurs. 

In some  problems the accelerating  interface is simultaneously  ablating,  and  this will 
affect the  instability growth in ways that  the model cannot  currently  represent. 
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As discussed above, the model in its present form produces  linear  or  nearly  linear vol- 
ume fraction profiles. Such profiles are  not realistic at large Atwood number, where 
the spike-bubble  assymmetry becomes pronounced. The generalization of Eq- (18) to 
accommodate  more  general volume fraction profiles therefore  requires further consid- 
eration. 

Concluding Remarks 
We have described a heuristic  procedure for generalizing a simple ODE mix  model into 

a form  suitable for implementation  in  hydrodynamics codes. This  procedure was used to 
implement  the model in  the COYOTE code for development and  testing purposes.  Test cal- 
culations  and  comparisons  with  experimental data were performed for incompressible  linear 
electric  motor  experiments and a shock tube experiment,  and in all cases good  agreement 
with  the  data was obtained using a single set of model  parameters. 

Although  implementation  details  are  inevitably code-specific to some degree, the imple- 
mentation  procedure that we have described is sufficiently general that it should be equally 
applicable to a variety of other hydrodynamics codes and numerical schemes. In particular, 
the basic  procedure is equally  applicable  in  Lagrangian,  Eulerian,  or ALE codes in one, two, 
or three space  dimensions. It would be relatively  straightforward to implement  this model 
in other  hydrodynamics codes by essentialIy the  same procedure, and  this will indeed be 
required to address a wider range of problems and assess the overall utility of the model. 
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